ar X iv : m at h / 06 07 43 7 v 1 [ m at h . FA ] 1 8 Ju l 2 00 6 Operator identities relating sonar and Radon transforms in Euclidean space

نویسندگان

  • Aleksei Beltukov
  • David Feldman
چکیده

We establish new relations which connect Euclidean sonar transforms (integrals taken over spheres with centers in a hyperplane) with classical Radon transforms. The relations, stated as operator identities, allow us to reduce the inversion of sonar transforms to classical Radon inversion.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ar X iv : m at h / 06 10 07 7 v 1 [ m at h . FA ] 2 O ct 2 00 6 COMPOSITION OPERATORS WITHIN SINGLY GENERATED COMPOSITION C ∗ - ALGEBRAS

Let φ be a linear-fractional self-map of the open unit disk D, not an automorphism, such that φ(ζ) = η for two distinct points ζ, η in the unit circle ∂D. We consider the question of which composition operators lie in C∗(Cφ,K), the unital C∗-algebra generated by the composition operator Cφ and the ideal K of compact operators, acting on the Hardy space H.

متن کامل

ar X iv : m at h / 06 03 03 6 v 2 [ m at h . Q A ] 8 M ay 2 00 6 WAVELET TRANSFORMS ASSOCIATED WITH THE BASIC BESSEL OPERATOR

This paper aims to study the q-wavelet and the q-wavelet transforms, associated with the q-Bessel operator for a fixed q ∈]0, 1[. As an application, an inversion formulas of the q-Riemann-Liouville and q-Weyl transforms using qwavelets are given. For this purpose, we shall attempt to extend the classical theory by giving their q-analogues.

متن کامل

ar X iv : 0 90 7 . 29 64 v 1 [ m at h . FA ] 1 7 Ju l 2 00 9 THE NORM OF A TRUNCATED TOEPLITZ OPERATOR

We prove several lower bounds for the norm of a truncated Toeplitz operator and obtain a curious relationship between the H and H∞ norms of functions in model spaces.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008